Groups in which each element commutes with its endomorphic images
نویسندگان
چکیده
منابع مشابه
Endomorphic Presentations of Branch Groups
We introduce “endomorphic presentations”, or L-presentations: group presentations whose relations are iterated under a set of substitutions on the generating set, and show that a broad class of groups acting on rooted trees admit explicitly constructible finite L-presentations, generalising results by Igor Lysionok and Said Sidki.
متن کاملPairs of matrices, one of which commutes with their commutator
Let A, B be n × n complex matrices such that C = AB − BA and A commute. For n = 2, we prove that A, B are simultaneously triangularizable. For n ≥ 3, we give an example of matrices A, B such that the pair (A, B) does not have property L of Motzkin-Taussky, and such that B and C are not simultaneously triangularizable. Finally, we estimate the complexity of the Alp’in-Koreshkov’s algorithm that ...
متن کاملGroups in which every subgroup has finite index in its Frattini closure
In 1970, Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $IM$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. A group $G$ is said to have the $FM$...
متن کاملUnitarity in “ quantization commutes with reduction ” Brian
Let M be a compact Kähler manifold equipped with a Hamiltonian action of a compact Lie group G. In this paper, we study the geometric quantization of the symplectic quotient M/G. Guillemin and Sternberg [Invent. Math. 67 (1982), 515–538] have shown, under suitable regularity assumptions, that there is a natural invertible map between the quantum Hilbert space over M/G and the G-invariant subspa...
متن کاملEla Pairs of Matrices, One of Which Commutes with Their Commutator∗
Let A, B be n × n complex matrices such that C = AB − BA and A commute. For n = 2, we prove that A, B are simultaneously triangularizable. For n ≥ 3, we give an example of matrices A, B such that the pair (A, B) does not have property L of Motzkin-Taussky, and such that B and C are not simultaneously triangularizable. Finally, we estimate the complexity of the Alp’in-Koreshkov’s algorithm that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1971
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1971-0269737-3